[Contribution from the Metallurgical Fundamentals Section, Metallurgical Division, Bureau of Mines, United States Department of the Interior]

High-temperature Heat Content of Mn_3O_4 , $MnSiO_3$ and Mn_3C^1

By J. C. Southard² and G. E. Moore³

This paper is a report of part of a program of study of the thermodynamic properties of manganese compounds that is being conducted at the Pacific Experiment Station of the Bureau of Mines, U. S. Department of the Interior. Entropies of Mn₃O₄,⁴ MnSiO₃⁵ and Mn₃C⁶ have been determined previously. Heats of formation of these substances are given in standard reference tables, so that high-temperature heat contents are the only additional quantities required for the calculation of their free energies at high temperatures. These calculations will not be presented here, however, because present values of the heats of formation are not considered satisfactorily accurate and a redetermination of them is in progress.

Apparatus and Materials

The high-temperature heat contents were determined in an apparatus previously described.⁷ The apparatus was calibrated electrically, using the relation 1 calorie = 4.1833 Int. Joules. During the measurements Mn₃O₄ was contained in an unsealed platinum-alloy capsule, MnSiO₃ in a sealed platinum-alloy capsule, and Mn₃C in an evacuated and sealed silica-glass capsule.

 Mn_3O_4 was prepared by roasting a high-purity sample of $MnSO_4$ in air at about 1000°. Analysis for active oxygen by titration with ferrous sulfate and potassium permangate gave 7.01 and 7.03% before the measurements and 6.96% afterward (calcd. 6.99%). Manganese was determined to be 71.89 and 71.92% (calcd. 72.02%). The sample was sintered at 1200° before use. Description of the preparation and analysis of the MnSiO₃ sample has been given by Kelley.⁵ Mn₃C was prepared by F. S. Boericke from ground electrolytic manganese and high-purity, degassed carbon black by heating three days at 850°. Analysis showed that the sample contained about 98.8%

- (2) Formerly Chemist, Metallurgical Division, Bureau of Mines; present address, Titanium Alloy Mfg. Co., Niagara Falls, N. Y.
- (3) Associate Physical Chemist, Metallurgical Division, Bureau of Mines.
 - (4) R. W. Millar, This Journal, 50, 1875 (1928).
 - (5) K. K. Kelley, ibid., 63, 2750 (1941).
 - (6) K. K. Kelley and G. E. Moore, unpublished.
 - (7) J. C. Southard, THIS JOURNAL, 63, 3142 (1941).

Mn₃C and 1.2% free manganese. No correction will be made for this impurity, since it would be of the order of 0.1%.

Results

The experimentally determined heat contents above 298.1° K. of Mn_sO_4 , $MnSiO_3$ and Mn_3C are given in Tables I, II, and III in the order in which they were taken. Graphs of the data show transitions in Mn_3O_4 at 1445 \pm 40° K. amounting to 4500 cal./g. f. w., and in Mn_3C at 1310 \pm 2° K. amounting to 3140 cal./g. f. w. The heat-content curve of $MnSiO_3$ shows no discontinuities. No previous high-temperature heat-content data for these substances appear in the literature.

ΤA	BLE I	666.1	9,290			
Нідн-Темр	ERATURE HEAT	664.9	9,240			
Conten	T OF Mn ₃ O ₄	1245.0	26,190			
(g. f. w. = 228.79)		1245.7	26,270			
Temp.,	$H_{\rm T} - H_{298.1}$	488.5	4,470			
°K.	cal./g. f. w.	502.5	4,880			
1290.9	42,180	1365.6	30,050			
1429.9	49,680	1451.8	32,710			
1421.1	49,050	1508.7	34,550			
985.6	28,020	There III				
984.3	27,890	IABLE III				
1510.2	57,840	HIGH-TEMPERATURE HEAT				
1476.0	56,520	CONTENT OF Mn ₈ C				
1547.5	60,040	(g. f. w. = 176.80)				
1448.6	55,110	Temp.,	$H_{\rm T} - H_{298.1}$			
1431.4	49,870	ъ. 971 О	15 970			
1441.4	50,370	871.0	15,870			
763.0	18,48 0	812.3	10,090			
760.2	18,340	008.3	9,040			
498.9	7,560	670.8	9,000			
498.3	7,520	470.7	4,200			
1188.6	37,110	1071.6	21,000			
1768.8	71,200	1069.9	21,420			
1761.1	70,830	1176.3	24,840			
		1321.0	33,000			
TABLE II		1202.8	27,410			
HIGH-TEMPERATURE HEAT		1292.0	28,810			
CONTENT OF MnSiO ₃		1371.1	34,940			
(g. f. w. = 130.99)		2d series				
Temp.,	$H_{\rm T} - H_{298.1}$	1268.5	28,070			
°K.	cal./g. f. w.	1393.3	35,690			
1058.0	20,670	1309.1	30,360			
1060.1	20,640	1307.9	29,950			
845.6	14,400	1295.3	29,350			
844.4	14.320	1420.4	36.830			

Table IV is a summary at even 100° intervals of their heat contents and entropies above 298.1° K.

⁽¹⁾ Published by permission of the Director, Bureau of Mines-U. S. Department of the Interior. Not subject to copyright.

TABLE IV

Heat Contents and Entropies above 298.1° K. In Cal./g. f. w. at 100° Intervals

Temp.,	Mn ₃ O ₄		Mn3C		MnSiO3	
	H_{T} —	ST	Ηт —	$S_T -$	$H_T -$	$S_T -$
°K.	$H_{298.1}$	S298.1	H 298.1	S298.1	$H_{298.1}$	S298.1
400	3,700	10.60	2,450	7.07	2,320	6.66
500	7,590	19.26	5,020	12.79	4,800	12.19
600	11,590	26.54	7,700	17.67	7,430	16.98
700	15,760	32.96	10,490	21,96	10,200	21.24
800	19,980	38.59	13,350	25.78	13,080	25.09
900	24,230	43.59	16,300	29.25	15,980	28.50
1000	28,620	48.22	19,300	32.41	18,890	31.56
1100	33,130	52.52	22,400	35.36	21,830	34.37
1200	37,740	56.53	25,650	38.19	24,900	37.04
1300	42,620	60.43	29,200	41.03	27,950	39.45
1310			$\alpha 29,550$	41.30		
1310			β32,690	43.70		
1400	47,960	64.39	36,040	46.17	31,090	41.77
1445	a50.460	66.15				
1445	β54,960	69,26				
1500	57,700	71.12	39,840	48.79	34,300	43.99
1600	62,700	74.38				
1700	67,740	77.40				
1800	72,820	80.31				

This table, in combination with similar tables for oxygen, carbon, and silicon, permits ready calculation of free energies at these temperatures from whatever values of the heat of formation an investigator may select.

Summary

The heat contents of Mn_3O_4 , $MnSiO_3$ and Mn_3C from room temperature to temperatures between 1140 and 1500° have been determined. These determinations have disclosed transitions of Mn_3O_4 at 1172° and Mn_3C at 1037°.

A table summarizing the increments in the heat contents and entropies of these substances above room temperature at 100° intervals has been prepared from these data and others in the literature.

NIAGARA FALLS, N. Y.

Received April 6, 1942

[CONTRIBUTION FROM THE METALLURGICAL FUNDAMENTALS SECTION, METALLURGICAL DIVISION, BUREAU OF MINES, UNITED STATES DEPARTMENT OF THE INTERIOR]

Heat of Formation and High-temperature Heat Content of Manganous Oxide and Manganous Sulfate. High-temperature Heat Content of Manganese¹

By J. C. Southard² and C. Howard Shomate³

The free energy of formation of manganous oxide at high temperatures has been uncertain because of the lack of satisfactory high-temperature heat content data. Further, the heat of formation of manganous oxide has been based almost entirely on heats of combustion. The combustion of manganese metal with oxygen in the bomb calorimeter does not proceed according to any definite reaction but yields a mixture of oxides assumed to be manganous oxide and manganomanganic oxide.^{4,5} The mixture consists of 10 to 50 per cent. manganous oxide. The heat of formation of manganous oxide therefore has depended on the combustion of manganous oxide to manganomanganic oxide. This requires the use of paraffin oil and also yields a product of varying composition. Under these conditions the heat of reaction is only 5 per cent. of the total heat measured.⁵ The heat of reaction also seemed to depend on whether the fraction converted to manganomanganic oxide was determined by increase in weight or by actual analysis.⁴ Determination of the heat of formation of manganous oxide by a completely independent, more direct, method appears advantageous.

The thermodynamic properties of manganese sulfate have been studied and entropies of the substances involved already have been determined, as well as the high-temperature heat-content data, with the exception of manganous sulfate. The heat of formation of manganous sulfate has not been determined since the days of Thomsen and Berthelot, at which time pure manganese was not available.

Methods and Materials

The high-temperature heat contents were determined in an apparatus previously described.⁶ The apparatus was calibrated electrically, using the relation 1 calorie = 4.1833 Int. joules. During the measurements manganous oxide and manganous sulfate were contained in a sealed platinum-alloy capsule and manganese metal in an evacuated and sealed silica-glass capsule. The heats of formation of manganous oxide and manganous sulfate

Published by permission of the Director, Bureau of Mines,
 U. S. Department of the Interior. Not subject to copyright.
 (2) Formerly Chemist, Metallurgical Division, Bureau of Mines;

present address, Titanium Alloy Mfg. Co., Niagara Falls, N. Y.

⁽³⁾ Assistant Chemist, Metallurgical Division, Bureau of Mines.
(4) W. A. Roth, Z. angew. Chem., 42, 981 (1929).

⁽⁵⁾ H. Siemonsen, Z. Elektrochem., 45, 637 (1939).

⁽⁶⁾ J. C. Southard, THIS JOURNAL, 63, 3142 (1941).